diff --git a/gcc/ChangeLog b/gcc/ChangeLog
index e8d1398d3f877262a7c3b436d7f2db0d19f0e2f8..fd7b7e348b540a44ac4c1bbe1e81d99e2180166d 100644
--- a/gcc/ChangeLog
+++ b/gcc/ChangeLog
@@ -1,3 +1,20 @@
+2004-08-10  Daniel Berlin <dberlin@dberlin.org>
+
+	* lambda.h: Add matrix type, and prototypes for remainder of
+	matrix and vector functions.
+	(lambda_vector_mult_const): New function.
+	(lambda_vector_negate): Ditto.
+	(lambda_vector_add): Ditto.
+	(lambda_vector_add_mc): Ditto.
+	(lambda_vector_copy): Ditto.
+	(lambda_vector_zerop): Ditto.
+	(lambda_vector_equal): Ditto.
+	(lambda_vector_min_nz): Ditto.
+	(lambda_vector_first_nz): Ditto.
+	(lambda_vector_matrix_mult): Ditto.
+	* lambda-mat.c: New file.
+	* Makefile.in (lambda-mat.o): New.
+
 2004-08-10  Andrew MacLeod  <amacleod@redhat.com>
 
 	* tree-cfg.c (bsi_insert_before, bsi_insert_after): Call modify_stmt
diff --git a/gcc/Makefile.in b/gcc/Makefile.in
index 984bb9e0bdd391638565b3ebd850962dbb80b3b5..c51760a0697e6b261de33168bf913bd7fe4ec3dd 100644
--- a/gcc/Makefile.in
+++ b/gcc/Makefile.in
@@ -140,7 +140,7 @@ XCFLAGS =
 TCFLAGS =
 CFLAGS = -g
 STAGE1_CFLAGS = -g @stage1_cflags@
-BOOT_CFLAGS = -g -O2
+BOOT_CFLAGS = -g -O2 -dU
 
 # Flags to determine code coverage. When coverage is disabled, this will
 # contain the optimization flags, as you normally want code coverage
@@ -922,7 +922,7 @@ OBJS-common = \
  targhooks.o timevar.o toplev.o tracer.o tree.o tree-dump.o unroll.o	   \
  varasm.o varray.o vec.o version.o vmsdbgout.o xcoffout.o alloc-pool.o	   \
  et-forest.o cfghooks.o bt-load.o pretty-print.o $(GGC) web.o passes.o	   \
- rtl-profile.o tree-profile.o rtlhooks.o cfgexpand.o
+ rtl-profile.o tree-profile.o rtlhooks.o cfgexpand.o lambda-mat.o
 
 OBJS-md = $(out_object_file)
 OBJS-archive = $(EXTRA_OBJS) $(host_hook_obj) tree-inline.o		   \
@@ -2127,6 +2127,7 @@ ifcvt.o : ifcvt.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(RTL_H) \
    $(REGS_H) toplev.h $(FLAGS_H) insn-config.h function.h $(RECOG_H) $(TARGET_H) \
    $(BASIC_BLOCK_H) $(EXPR_H) output.h except.h $(TM_P_H) real.h $(OPTABS_H) \
    $(CFGLOOP_H)
+lambda-mat.o : lambda-mat.c lambda.h $(GGC_H) $(SYSTEM_H) $(CONFIG_H) $(TM_H)
 params.o : params.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(PARAMS_H) toplev.h
 hooks.o: hooks.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(HOOKS_H)
 pretty-print.o: $(CONFIG_H) $(SYSTEM_H) pretty-print.c $(PRETTY_PRINT_H)
diff --git a/gcc/lambda-mat.c b/gcc/lambda-mat.c
new file mode 100644
index 0000000000000000000000000000000000000000..987fa5e1fd17c46b13c867ffc1d4c5522a6459df
--- /dev/null
+++ b/gcc/lambda-mat.c
@@ -0,0 +1,638 @@
+/* Integer matrix math routines
+   Copyright (C) 2003, 2004 Free Software Foundation, Inc.
+   Contributed by Daniel Berlin <dberlin@dberlin.org>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING.  If not, write to the Free
+Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+02111-1307, USA.  */
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "ggc.h"
+#include "varray.h"
+#include "lambda.h"
+
+static void lambda_matrix_get_column (lambda_matrix, int, int, 
+				      lambda_vector);
+
+/* Allocate a matrix of M rows x  N cols.  */
+
+lambda_matrix
+lambda_matrix_new (int m, int n)
+{
+  lambda_matrix mat;
+  int i;
+
+  mat = ggc_alloc (m * sizeof (lambda_vector));
+  
+  for (i = 0; i < m; i++)
+    mat[i] = lambda_vector_new (n);
+
+  return mat;
+}
+
+/* Copy the elements of M x N matrix MAT1 to MAT2.  */
+
+void
+lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
+		    int m, int n)
+{
+  int i;
+
+  for (i = 0; i < m; i++)
+    lambda_vector_copy (mat1[i], mat2[i], n);
+}
+
+/* Store the N x N identity matrix in MAT.  */
+
+void
+lambda_matrix_id (lambda_matrix mat, int size)
+{
+  int i, j;
+
+  for (i = 0; i < size; i++)
+    for (j = 0; j < size; j++)
+      mat[i][j] = (i == j) ? 1 : 0;
+}
+
+/* Negate the elements of the M x N matrix MAT1 and store it in MAT2.  */
+
+void
+lambda_matrix_negate (lambda_matrix mat1, lambda_matrix mat2, int m, int n)
+{
+  int i;
+
+  for (i = 0; i < m; i++)
+    lambda_vector_negate (mat1[i], mat2[i], n);
+}
+
+/* Take the transpose of matrix MAT1 and store it in MAT2.
+   MAT1 is an M x N matrix, so MAT2 must be N x M.  */
+
+void
+lambda_matrix_transpose (lambda_matrix mat1, lambda_matrix mat2, int m, int n)
+{
+  int i, j;
+
+  for (i = 0; i < n; i++)
+    for (j = 0; j < m; j++)
+      mat2[i][j] = mat1[j][i];
+}
+
+
+/* Add two M x N matrices together: MAT3 = MAT1+MAT2.  */
+
+void
+lambda_matrix_add (lambda_matrix mat1, lambda_matrix mat2,
+		   lambda_matrix mat3, int m, int n)
+{
+  int i;
+
+  for (i = 0; i < m; i++)
+    lambda_vector_add (mat1[i], mat2[i], mat3[i], n);
+}
+
+/* MAT3 = CONST1 * MAT1 + CONST2 * MAT2.  All matrices are M x N.  */
+
+void
+lambda_matrix_add_mc (lambda_matrix mat1, int const1,
+		      lambda_matrix mat2, int const2,
+		      lambda_matrix mat3, int m, int n)
+{
+  int i;
+
+  for (i = 0; i < m; i++)
+    lambda_vector_add_mc (mat1[i], const1, mat2[i], const2, mat3[i], n);
+}
+
+/* Multiply two matrices: MAT3 = MAT1 * MAT2.
+   MAT1 is an M x R matrix, and MAT2 is R x N.  The resulting MAT2
+   must therefore be M x N.  */
+
+void
+lambda_matrix_mult (lambda_matrix mat1, lambda_matrix mat2,
+		    lambda_matrix mat3, int m, int r, int n)
+{
+
+  int i, j, k;
+
+  for (i = 0; i < m; i++)
+    {
+      for (j = 0; j < n; j++)
+	{
+	  mat3[i][j] = 0;
+	  for (k = 0; k < r; k++)
+	    mat3[i][j] += mat1[i][k] * mat2[k][j];
+	}
+    }
+}
+
+/* Get column COL from the matrix MAT and store it in VEC.  MAT has
+   N rows, so the length of VEC must be N.  */
+
+static void
+lambda_matrix_get_column (lambda_matrix mat, int n, int col,
+			  lambda_vector vec)
+{
+  int i;
+
+  for (i = 0; i < n; i++)
+    vec[i] = mat[i][col];
+}
+
+/* Delete rows r1 to r2 (not including r2). */
+
+void
+lambda_matrix_delete_rows (lambda_matrix mat, int rows, int from, int to)
+{
+  int i;
+  int dist;
+  dist = to - from;
+
+  for (i = to; i < rows; i++)
+    mat[i - dist] = mat[i];
+
+  for (i = rows - dist; i < rows; i++)
+    mat[i] = NULL;
+}
+
+/* Swap rows R1 and R2 in matrix MAT.  */
+
+void
+lambda_matrix_row_exchange (lambda_matrix mat, int r1, int r2)
+{
+  lambda_vector row;
+
+  row = mat[r1];
+  mat[r1] = mat[r2];
+  mat[r2] = row;
+}
+
+/* Add a multiple of row R1 of matrix MAT with N columns to row R2:
+   R2 = R2 + CONST1 * R1.  */
+
+void
+lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
+{
+  int i;
+
+  if (const1 == 0)
+    return;
+
+  for (i = 0; i < n; i++)
+    mat[r2][i] += const1 * mat[r1][i];
+}
+
+/* Negate row R1 of matrix MAT which has N columns.  */
+
+void
+lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
+{
+  lambda_vector_negate (mat[r1], mat[r1], n);
+}
+
+/* Multiply row R1 of matrix MAT with N columns by CONST1.  */
+
+void
+lambda_matrix_row_mc (lambda_matrix mat, int n, int r1, int const1)
+{
+  int i;
+
+  for (i = 0; i < n; i++)
+    mat[r1][i] *= const1;
+}
+
+/* Exchange COL1 and COL2 in matrix MAT. M is the number of rows.  */
+
+void
+lambda_matrix_col_exchange (lambda_matrix mat, int m, int col1, int col2)
+{
+  int i;
+  int tmp;
+  for (i = 0; i < m; i++)
+    {
+      tmp = mat[i][col1];
+      mat[i][col1] = mat[i][col2];
+      mat[i][col2] = tmp;
+    }
+}
+
+/* Add a multiple of column C1 of matrix MAT with M rows to column C2:
+   C2 = C2 + CONST1 * C1.  */
+
+void
+lambda_matrix_col_add (lambda_matrix mat, int m, int c1, int c2, int const1)
+{
+  int i;
+
+  if (const1 == 0)
+    return;
+
+  for (i = 0; i < m; i++)
+    mat[i][c2] += const1 * mat[i][c1];
+}
+
+/* Negate column C1 of matrix MAT which has M rows.  */
+
+void
+lambda_matrix_col_negate (lambda_matrix mat, int m, int c1)
+{
+  int i;
+
+  for (i = 0; i < m; i++)
+    mat[i][c1] *= -1;
+}
+
+/* Multiply column C1 of matrix MAT with M rows by CONST1.  */
+
+void
+lambda_matrix_col_mc (lambda_matrix mat, int m, int c1, int const1)
+{
+  int i;
+
+  for (i = 0; i < m; i++)
+    mat[i][c1] *= const1;
+}
+
+/* Compute the inverse of the N x N matrix MAT and store it in INV.
+
+   We don't _really_ compute the inverse of MAT.  Instead we compute
+   det(MAT)*inv(MAT), and we return det(MAT) to the caller as the function
+   result.  This is necessary to preserve accuracy, because we are dealing
+   with integer matrices here.
+
+   The algorithm used here is a column based Gauss-Jordan elimination on MAT
+   and the identity matrix in parallel.  The inverse is the result of applying
+   the same operations on the identity matrix that reduce MAT to the identity
+   matrix.
+
+   When MAT is a 2 x 2 matrix, we don't go through the whole process, because
+   it is easily inverted by inspection and it is a very common case.  */
+
+static int lambda_matrix_inverse_hard (lambda_matrix, lambda_matrix, int);
+
+int
+lambda_matrix_inverse (lambda_matrix mat, lambda_matrix inv, int n)
+{
+  if (n == 2)
+    {
+      int a, b, c, d, det;
+      a = mat[0][0];
+      b = mat[1][0];
+      c = mat[0][1];
+      d = mat[1][1];      
+      inv[0][0] =  d;
+      inv[0][1] = -c;
+      inv[1][0] = -b;
+      inv[1][1] =  a;
+      det = (a * d - b * c);
+      if (det < 0)
+	{
+	  det *= -1;
+	  inv[0][0] *= -1;
+	  inv[1][0] *= -1;
+	  inv[0][1] *= -1;
+	  inv[1][1] *= -1;
+	}
+      return det;
+    }
+  else
+    return lambda_matrix_inverse_hard (mat, inv, n);
+}
+
+/* If MAT is not a special case, invert it the hard way.  */
+
+static int
+lambda_matrix_inverse_hard (lambda_matrix mat, lambda_matrix inv, int n)
+{
+  lambda_vector row;
+  lambda_matrix temp;
+  int i, j;
+  int determinant;
+
+  temp = lambda_matrix_new (n, n);
+  lambda_matrix_copy (mat, temp, n, n);
+  lambda_matrix_id (inv, n);
+
+  /* Reduce TEMP to a lower triangular form, applying the same operations on
+     INV which starts as the identity matrix.  N is the number of rows and
+     columns.  */
+  for (j = 0; j < n; j++)
+    {
+      row = temp[j];
+
+      /* Make every element in the current row positive.  */
+      for (i = j; i < n; i++)
+	if (row[i] < 0)
+	  {
+	    lambda_matrix_col_negate (temp, n, i);
+	    lambda_matrix_col_negate (inv, n, i);
+	  }
+
+      /* Sweep the upper triangle.  Stop when only the diagonal element in the
+	 current row is nonzero.  */
+      while (lambda_vector_first_nz (row, n, j + 1) < n)
+	{
+	  int min_col = lambda_vector_min_nz (row, n, j);
+	  lambda_matrix_col_exchange (temp, n, j, min_col);
+	  lambda_matrix_col_exchange (inv, n, j, min_col);
+
+	  for (i = j + 1; i < n; i++)
+	    {
+	      int factor;
+
+	      factor = -1 * row[i];
+	      if (row[j] != 1)
+		factor /= row[j];
+
+	      lambda_matrix_col_add (temp, n, j, i, factor);
+	      lambda_matrix_col_add (inv, n, j, i, factor);
+	    }
+	}
+    }
+
+  /* Reduce TEMP from a lower triangular to the identity matrix.  Also compute
+     the determinant, which now is simply the product of the elements on the
+     diagonal of TEMP.  If one of these elements is 0, the matrix has 0 as an
+     eigenvalue so it is singular and hence not invertible.  */
+  determinant = 1;
+  for (j = n - 1; j >= 0; j--)
+    {
+      int diagonal;
+
+      row = temp[j];
+      diagonal = row[j];
+
+      /* If the matrix is singular, abort.  */
+      if (diagonal == 0)
+	abort ();
+
+      determinant = determinant * diagonal;
+
+      /* If the diagonal is not 1, then multiply the each row by the
+         diagonal so that the middle number is now 1, rather than a
+         rational.  */
+      if (diagonal != 1)
+	{
+	  for (i = 0; i < j; i++)
+	    lambda_matrix_col_mc (inv, n, i, diagonal);
+	  for (i = j + 1; i < n; i++)
+	    lambda_matrix_col_mc (inv, n, i, diagonal);
+
+	  row[j] = diagonal = 1;
+	}
+
+      /* Sweep the lower triangle column wise.  */
+      for (i = j - 1; i >= 0; i--)
+	{
+	  if (row[i])
+	    {
+	      int factor = -row[i];
+	      lambda_matrix_col_add (temp, n, j, i, factor);
+	      lambda_matrix_col_add (inv, n, j, i, factor);
+	    }
+
+	}
+    }
+
+  return determinant;
+}
+
+/* Decompose a N x N matrix MAT to a product of a lower triangular H
+   and a unimodular U matrix such that MAT = H.U.  N is the size of
+   the rows of MAT.  */
+
+void
+lambda_matrix_hermite (lambda_matrix mat, int n,
+		       lambda_matrix H, lambda_matrix U)
+{
+  lambda_vector row;
+  int i, j, factor, minimum_col;
+
+  lambda_matrix_copy (mat, H, n, n);
+  lambda_matrix_id (U, n);
+
+  for (j = 0; j < n; j++)
+    {
+      row = H[j];
+
+      /* Make every element of H[j][j..n] positive.  */
+      for (i = j; i < n; i++)
+	{
+	  if (row[i] < 0)
+	    {
+	      lambda_matrix_col_negate (H, n, i);
+	      lambda_vector_negate (U[i], U[i], n);
+	    }
+	}
+
+      /* Stop when only the diagonal element is non-zero.  */
+      while (lambda_vector_first_nz (row, n, j + 1) < n)
+	{
+	  minimum_col = lambda_vector_min_nz (row, n, j);
+	  lambda_matrix_col_exchange (H, n, j, minimum_col);
+	  lambda_matrix_row_exchange (U, j, minimum_col);
+
+	  for (i = j + 1; i < n; i++)
+	    {
+	      factor = row[i] / row[j];
+	      lambda_matrix_col_add (H, n, j, i, -1 * factor);
+	      lambda_matrix_row_add (U, n, i, j, factor);
+	    }
+	}
+    }
+}
+
+/* Given an M x N integer matrix A, this function determines an M x
+   M unimodular matrix U, and an M x N echelon matrix S such that
+   "U.A = S".  This decomposition is also known as "right Hermite".
+   
+   Ref: Algorithm 2.1 page 33 in "Loop Transformations for
+   Restructuring Compilers" Utpal Banerjee. */
+
+void
+lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
+			     lambda_matrix S, lambda_matrix U)
+{
+  int i, j, i0 = 0;
+
+  lambda_matrix_copy (A, S, m, n);
+  lambda_matrix_id (U, m);
+
+  for (j = 0; j < n; j++)
+    {
+      if (lambda_vector_first_nz (S[j], m, i0) < m)
+	{
+	  ++i0;
+	  for (i = m - 1; i >= i0; i--)
+	    {
+	      while (S[i][j] != 0)
+		{
+		  int sigma, factor, a, b;
+
+		  a = S[i-1][j];
+		  b = S[i][j];
+		  sigma = (a * b < 0) ? -1: 1;
+		  a = abs (a);
+		  b = abs (b);
+		  factor = sigma * (a / b);
+
+		  lambda_matrix_row_add (S, n, i, i-1, -factor);
+		  lambda_matrix_row_exchange (S, i, i-1);
+
+		  lambda_matrix_row_add (U, m, i, i-1, -factor);
+		  lambda_matrix_row_exchange (U, i, i-1);
+		}
+	    }
+	}
+    }
+}
+
+/* Given an M x N integer matrix A, this function determines an M x M
+   unimodular matrix V, and an M x N echelon matrix S such that "A =
+   V.S".  This decomposition is also known as "left Hermite".
+   
+   Ref: Algorithm 2.2 page 36 in "Loop Transformations for
+   Restructuring Compilers" Utpal Banerjee. */
+
+void
+lambda_matrix_left_hermite (lambda_matrix A, int m, int n,
+			     lambda_matrix S, lambda_matrix V)
+{
+  int i, j, i0 = 0;
+
+  lambda_matrix_copy (A, S, m, n);
+  lambda_matrix_id (V, m);
+
+  for (j = 0; j < n; j++)
+    {
+      if (lambda_vector_first_nz (S[j], m, i0) < m)
+	{
+	  ++i0;
+	  for (i = m - 1; i >= i0; i--)
+	    {
+	      while (S[i][j] != 0)
+		{
+		  int sigma, factor, a, b;
+
+		  a = S[i-1][j];
+		  b = S[i][j];
+		  sigma = (a * b < 0) ? -1: 1;
+		  a = abs (a);
+      b = abs (b);
+		  factor = sigma * (a / b);
+
+		  lambda_matrix_row_add (S, n, i, i-1, -factor);
+		  lambda_matrix_row_exchange (S, i, i-1);
+
+		  lambda_matrix_col_add (V, m, i-1, i, factor);
+		  lambda_matrix_col_exchange (V, m, i, i-1);
+		}
+	    }
+	}
+    }
+}
+
+/* When it exists, return the first non-zero row in MAT after row
+   STARTROW.  Otherwise return rowsize.  */
+
+int
+lambda_matrix_first_nz_vec (lambda_matrix mat, int rowsize, int colsize,
+			    int startrow)
+{
+  int j;
+  bool found = false;
+
+  for (j = startrow; (j < rowsize) && !found; j++)
+    {
+      if ((mat[j] != NULL)
+	  && (lambda_vector_first_nz (mat[j], colsize, startrow) < colsize))
+	found = true;
+    }
+
+  if (found)
+    return j - 1;
+  return rowsize;
+}
+
+/* Calculate the projection of E sub k to the null space of B.  */
+
+void
+lambda_matrix_project_to_null (lambda_matrix B, int rowsize,
+			       int colsize, int k, lambda_vector x)
+{
+  lambda_matrix M1, M2, M3, I;
+  int determinant;
+
+  /* compute c(I-B^T inv(B B^T) B) e sub k   */
+
+  /* M1 is the transpose of B */
+  M1 = lambda_matrix_new (colsize, colsize);
+  lambda_matrix_transpose (B, M1, rowsize, colsize);
+
+  /* M2 = B * B^T */
+  M2 = lambda_matrix_new (colsize, colsize);
+  lambda_matrix_mult (B, M1, M2, rowsize, colsize, rowsize);
+
+  /* M3 = inv(M2) */
+  M3 = lambda_matrix_new (colsize, colsize);
+  determinant = lambda_matrix_inverse (M2, M3, rowsize);
+
+  /* M2 = B^T (inv(B B^T)) */
+  lambda_matrix_mult (M1, M3, M2, colsize, rowsize, rowsize);
+
+  /* M1 = B^T (inv(B B^T)) B */
+  lambda_matrix_mult (M2, B, M1, colsize, rowsize, colsize);
+  lambda_matrix_negate (M1, M1, colsize, colsize);
+
+  I = lambda_matrix_new (colsize, colsize);
+  lambda_matrix_id (I, colsize);
+
+  lambda_matrix_add_mc (I, determinant, M1, 1, M2, colsize, colsize);
+
+  lambda_matrix_get_column (M2, colsize, k - 1, x);
+
+}
+
+/* Multiply a vector VEC by a matrix MAT.
+   MAT is an M*N matrix, and VEC is a vector with length N.  The result
+   is stored in DEST which must be a vector of length M.  */
+
+void
+lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
+			   lambda_vector vec, lambda_vector dest)
+{
+  int i, j;
+
+  lambda_vector_clear (dest, m);
+  for (i = 0; i < m; i++)
+    for (j = 0; j < n; j++)
+      dest[i] += matrix[i][j] * vec[j];
+}
+
+/* Print out an M x N matrix MAT to OUTFILE.  */
+
+void
+print_lambda_matrix (FILE * outfile, lambda_matrix matrix, int m, int n)
+{
+  int i;
+
+  for (i = 0; i < m; i++)
+    print_lambda_vector (outfile, matrix[i], n);
+  fprintf (outfile, "\n");
+}
+
diff --git a/gcc/lambda.h b/gcc/lambda.h
index 60ed8accbf2cbae7110fbba3417321f6362714e8..998e3f18c62c08b6c36aef96f1b024fb346c32c3 100644
--- a/gcc/lambda.h
+++ b/gcc/lambda.h
@@ -1,4 +1,4 @@
-/* Lambda matrix interface.
+/* Lambda matrix and vector interface.
    Copyright (C) 2003, 2004 Free Software Foundation, Inc.
    Contributed by Daniel Berlin <dberlin@dberlin.org>
 
@@ -18,11 +18,65 @@ You should have received a copy of the GNU General Public License
 along with GCC; see the file COPYING.  If not, write to the Free
 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
 02111-1307, USA.  */
- 
+
 #ifndef LAMBDA_H
 #define LAMBDA_H
 
+/* An integer vector.  A vector formally consists of an element of a vector
+   space. A vector space is a set that is closed under vector addition
+   and scalar multiplication.  In this vector space, an element is a list of
+   integers.  */
 typedef int *lambda_vector;
+/* An integer matrix.  A matrix consists of m vectors of length n (IE
+   all vectors are the same length).  */
+typedef lambda_vector *lambda_matrix;
+
+lambda_matrix lambda_matrix_new (int, int);
+
+void lambda_matrix_id (lambda_matrix, int);
+void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
+void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
+void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
+void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
+			int);
+void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
+			   lambda_matrix, int, int);
+void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
+			 int, int, int);
+void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
+void lambda_matrix_row_exchange (lambda_matrix, int, int);
+void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
+void lambda_matrix_row_negate (lambda_matrix mat, int, int);
+void lambda_matrix_row_mc (lambda_matrix, int, int, int);
+void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
+void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
+void lambda_matrix_col_negate (lambda_matrix, int, int);
+void lambda_matrix_col_mc (lambda_matrix, int, int, int);
+int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int);
+void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
+void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
+void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
+int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
+void lambda_matrix_project_to_null (lambda_matrix, int, int, int, 
+				    lambda_vector);
+void print_lambda_matrix (FILE *, lambda_matrix, int, int);
+
+void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector, 
+				lambda_vector);
+
+static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
+static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
+static inline void lambda_vector_add (lambda_vector, lambda_vector,
+				      lambda_vector, int);
+static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
+					 lambda_vector, int);
+static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
+static inline bool lambda_vector_zerop (lambda_vector, int);
+static inline void lambda_vector_clear (lambda_vector, int);
+static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
+static inline int lambda_vector_min_nz (lambda_vector, int, int);
+static inline int lambda_vector_first_nz (lambda_vector, int, int);
+static inline void print_lambda_vector (FILE *, lambda_vector, int);
 
 /* Allocate a new vector of given SIZE.  */
 
@@ -32,14 +86,149 @@ lambda_vector_new (int size)
   return ggc_alloc_cleared (size * sizeof(int));
 }
 
+
+
+/* Multiply vector VEC1 of length SIZE by a constant CONST1,
+   and store the result in VEC2.  */
+
+static inline void
+lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
+			  int size, int const1)
+{
+  int i;
+
+  if (const1 == 0)
+    lambda_vector_clear (vec2, size);
+  else
+    for (i = 0; i < size; i++)
+      vec2[i] = const1 * vec1[i];
+}
+
+/* Negate vector VEC1 with length SIZE and store it in VEC2.  */
+
+static inline void 
+lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
+		      int size)
+{
+  lambda_vector_mult_const (vec1, vec2, size, -1);
+}
+
+/* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE.  */
+
+static inline void
+lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
+		   lambda_vector vec3, int size)
+{
+  int i;
+  for (i = 0; i < size; i++)
+    vec3[i] = vec1[i] + vec2[i];
+}
+
+/* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2.  All vectors have length SIZE.  */
+
+static inline void
+lambda_vector_add_mc (lambda_vector vec1, int const1,
+		      lambda_vector vec2, int const2,
+		      lambda_vector vec3, int size)
+{
+  int i;
+  for (i = 0; i < size; i++)
+    vec3[i] = const1 * vec1[i] + const2 * vec2[i];
+}
+
+/* Copy the elements of vector VEC1 with length SIZE to VEC2.  */
+
+static inline void
+lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
+		    int size)
+{
+  memcpy (vec2, vec1, size * sizeof (*vec1));
+}
+
+/* Return true if vector VEC1 of length SIZE is the zero vector.  */
+
+static inline bool 
+lambda_vector_zerop (lambda_vector vec1, int size)
+{
+  int i;
+  for (i = 0; i < size; i++)
+    if (vec1[i] != 0)
+      return false;
+  return true;
+}
+
 /* Clear out vector VEC1 of length SIZE.  */
 
 static inline void
 lambda_vector_clear (lambda_vector vec1, int size)
 {
-  memset (vec1, 0, size * sizeof (int));
+  memset (vec1, 0, size * sizeof (*vec1));
 }
 
+/* Return true if two vectors are equal.  */
+ 
+static inline bool
+lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
+{
+  int i;
+  for (i = 0; i < size; i++)
+    if (vec1[i] != vec2[i])
+      return false;
+  return true;
+}
+
+/* Return the minimum non-zero element in vector VEC1 between START and N.
+   We must have START <= N.  */
+
+static inline int
+lambda_vector_min_nz (lambda_vector vec1, int n, int start)
+{
+  int j;
+  int min = -1;
+#ifdef ENABLE_CHECKING 
+  if (start > n)
+    abort ();
+#endif
+  for (j = start; j < n; j++)
+    {
+      if (vec1[j])
+	if (min < 0 || vec1[j] < vec1[min])
+	  min = j;
+    }
+
+  if (min < 0)
+    abort ();
+
+  return min;
+}
+
+/* Return the first nonzero element of vector VEC1 between START and N.
+   We must have START <= N.   Returns N if VEC1 is the zero vector.  */
+
+static inline int
+lambda_vector_first_nz (lambda_vector vec1, int n, int start)
+{
+  int j = start;
+  while (j < n && vec1[j] == 0)
+    j++;
+  return j;
+}
+
+
+/* Multiply a vector by a matrix.  */
+
+static inline void
+lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat, 
+			   int n, lambda_vector dest)
+{
+  int i, j;
+  lambda_vector_clear (dest, n);
+  for (i = 0; i < n; i++)
+    for (j = 0; j < m; j++)
+      dest[i] += mat[j][i] * vect[j];
+}
+
+
 /* Print out a vector VEC of length N to OUTFILE.  */
 
 static inline void
@@ -51,7 +240,5 @@ print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
     fprintf (outfile, "%3d ", vector[i]);
   fprintf (outfile, "\n");
 }
-
-
 #endif /* LAMBDA_H  */