Newer
Older
/*
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
* Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
* Copyright (c) 1999-2001 by Hewlett-Packard Company. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program
* for any purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*/
/* Boehm, July 31, 1995 5:02 pm PDT */
#include <stdio.h>
#include <limits.h>
#define I_HIDE_POINTERS /* To make GC_call_with_alloc_lock visible */
#ifdef GC_SOLARIS_THREADS
#if defined(MSWIN32) || defined(MSWINCE)
# define WIN32_LEAN_AND_MEAN
# define NOSERVICE
#endif
# ifdef THREADS
# ifdef PCR
# include "il/PCR_IL.h"
PCR_Th_ML GC_allocate_ml;
# else
# ifdef SRC_M3
/* Critical section counter is defined in the M3 runtime */
/* That's all we use. */
# else
# ifdef GC_SOLARIS_THREADS
mutex_t GC_allocate_ml; /* Implicitly initialized. */
# else
# if defined(GC_WIN32_THREADS)
# if defined(GC_PTHREADS)
pthread_mutex_t GC_allocate_ml = PTHREAD_MUTEX_INITIALIZER;
# elif defined(GC_DLL)
__declspec(dllexport) CRITICAL_SECTION GC_allocate_ml;
# else
CRITICAL_SECTION GC_allocate_ml;
# endif
# if defined(GC_PTHREADS) && !defined(GC_SOLARIS_THREADS)
# if defined(USE_SPIN_LOCK)
pthread_t GC_lock_holder = NO_THREAD;
# else
pthread_mutex_t GC_allocate_ml = PTHREAD_MUTEX_INITIALIZER;
pthread_t GC_lock_holder = NO_THREAD;
/* Used only for assertions, and to prevent */
/* recursive reentry in the system call wrapper. */
# endif
# else
# endif
# endif
# endif
# endif
# endif
# endif
/* Dont unnecessarily call GC_register_main_static_data() in case */
/* dyn_load.c isn't linked in. */
#ifdef DYNAMIC_LOADING
# define GC_REGISTER_MAIN_STATIC_DATA() GC_register_main_static_data()
#else
# define GC_REGISTER_MAIN_STATIC_DATA() TRUE
#endif
GC_FAR struct _GC_arrays GC_arrays /* = { 0 } */;
GC_bool GC_debugging_started = FALSE;
/* defined here so we don't have to load debug_malloc.o */
void (*GC_check_heap) GC_PROTO((void)) = (void (*) GC_PROTO((void)))0;
void (*GC_print_all_smashed) GC_PROTO((void)) = (void (*) GC_PROTO((void)))0;
void (*GC_start_call_back) GC_PROTO((void)) = (void (*) GC_PROTO((void)))0;
#ifdef IA64
ptr_t GC_register_stackbottom = 0;
#endif
#ifndef NO_DEBUGGING
GC_bool GC_dump_regularly = 0; /* Generate regular debugging dumps. */
#endif
#ifdef KEEP_BACK_PTRS
long GC_backtraces = 0; /* Number of random backtraces to */
/* generate for each GC. */
#endif
#ifdef FIND_LEAK
int GC_find_leak = 1;
#else
int GC_find_leak = 0;
#endif
#ifdef ALL_INTERIOR_POINTERS
int GC_all_interior_pointers = 1;
#else
int GC_all_interior_pointers = 0;
#endif
long GC_large_alloc_warn_interval = 5;
/* Interval between unsuppressed warnings. */
long GC_large_alloc_warn_suppressed = 0;
/* Number of warnings suppressed so far. */
/*ARGSUSED*/
GC_PTR GC_default_oom_fn GC_PROTO((size_t bytes_requested))
{
return(0);
}
GC_PTR (*GC_oom_fn) GC_PROTO((size_t bytes_requested)) = GC_default_oom_fn;
extern signed_word GC_mem_found;
void * GC_project2(arg1, arg2)
void *arg1;
void *arg2;
{
return arg2;
}
# ifdef MERGE_SIZES
/* Set things up so that GC_size_map[i] >= words(i), */
/* but not too much bigger */
/* and so that size_map contains relatively few distinct entries */
/* This is stolen from Russ Atkinson's Cedar quantization */
/* alogrithm (but we precompute it). */
void GC_init_size_map()
{
register unsigned i;
/* Map size 0 to something bigger. */
/* This avoids problems at lower levels. */
/* One word objects don't have to be 2 word aligned, */
/* unless we're using mark bytes. */
for (i = 0; i < sizeof(word); i++) {
GC_size_map[i] = MIN_WORDS;
# if MIN_WORDS > 1
GC_size_map[sizeof(word)] = MIN_WORDS;
# else
GC_size_map[sizeof(word)] = ROUNDED_UP_WORDS(sizeof(word));
# endif
}
for (i = 8*sizeof(word) + 1; i <= 16 * sizeof(word); i++) {
GC_size_map[i] = (ROUNDED_UP_WORDS(i) + 1) & (~1);
}
# ifdef GC_GCJ_SUPPORT
/* Make all sizes up to 32 words predictable, so that a */
/* compiler can statically perform the same computation, */
/* or at least a computation that results in similar size */
/* classes. */
for (i = 16*sizeof(word) + 1; i <= 32 * sizeof(word); i++) {
GC_size_map[i] = (ROUNDED_UP_WORDS(i) + 3) & (~3);
}
# endif
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/* We leave the rest of the array to be filled in on demand. */
}
/* Fill in additional entries in GC_size_map, including the ith one */
/* We assume the ith entry is currently 0. */
/* Note that a filled in section of the array ending at n always */
/* has length at least n/4. */
void GC_extend_size_map(i)
word i;
{
word orig_word_sz = ROUNDED_UP_WORDS(i);
word word_sz = orig_word_sz;
register word byte_sz = WORDS_TO_BYTES(word_sz);
/* The size we try to preserve. */
/* Close to to i, unless this would */
/* introduce too many distinct sizes. */
word smaller_than_i = byte_sz - (byte_sz >> 3);
word much_smaller_than_i = byte_sz - (byte_sz >> 2);
register word low_limit; /* The lowest indexed entry we */
/* initialize. */
register word j;
if (GC_size_map[smaller_than_i] == 0) {
low_limit = much_smaller_than_i;
while (GC_size_map[low_limit] != 0) low_limit++;
} else {
low_limit = smaller_than_i + 1;
while (GC_size_map[low_limit] != 0) low_limit++;
word_sz = ROUNDED_UP_WORDS(low_limit);
word_sz += word_sz >> 3;
if (word_sz < orig_word_sz) word_sz = orig_word_sz;
}
# ifdef ALIGN_DOUBLE
word_sz += 1;
word_sz &= ~1;
# endif
if (word_sz > MAXOBJSZ) {
word_sz = MAXOBJSZ;
}
/* If we can fit the same number of larger objects in a block, */
/* do so. */
{
size_t number_of_objs = BODY_SZ/word_sz;
word_sz = BODY_SZ/number_of_objs;
# ifdef ALIGN_DOUBLE
word_sz &= ~1;
# endif
}
byte_sz = WORDS_TO_BYTES(word_sz);
/* We need one extra byte; don't fill in GC_size_map[byte_sz] */
for (j = low_limit; j <= byte_sz; j++) GC_size_map[j] = word_sz;
}
# endif
/*
* The following is a gross hack to deal with a problem that can occur
* on machines that are sloppy about stack frame sizes, notably SPARC.
* Bogus pointers may be written to the stack and not cleared for
* a LONG time, because they always fall into holes in stack frames
* that are not written. We partially address this by clearing
* sections of the stack whenever we get control.
*/
word GC_stack_last_cleared = 0; /* GC_no when we last did this */
# ifdef THREADS
# define BIG_CLEAR_SIZE 2048 /* Clear this much now and then. */
# define SMALL_CLEAR_SIZE 256 /* Clear this much every time. */
# define CLEAR_SIZE 213 /* Granularity for GC_clear_stack_inner */
# define DEGRADE_RATE 50
word GC_min_sp; /* Coolest stack pointer value from which we've */
/* already cleared the stack. */
word GC_high_water;
/* "hottest" stack pointer value we have seen */
/* recently. Degrades over time. */
word GC_words_allocd_at_reset;
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/* Clear the stack up to about limit. Return arg. */
/*ARGSUSED*/
ptr_t GC_clear_stack_inner(arg, limit)
ptr_t arg;
word limit;
{
word dummy[CLEAR_SIZE];
BZERO(dummy, CLEAR_SIZE*sizeof(word));
if ((word)(dummy) COOLER_THAN limit) {
(void) GC_clear_stack_inner(arg, limit);
}
/* Make sure the recursive call is not a tail call, and the bzero */
/* call is not recognized as dead code. */
GC_noop1((word)dummy);
return(arg);
}
#endif
/* Clear some of the inaccessible part of the stack. Returns its */
/* argument, so it can be used in a tail call position, hence clearing */
/* another frame. */
ptr_t GC_clear_stack(arg)
ptr_t arg;
{
register word sp = (word)GC_approx_sp(); /* Hotter than actual sp */
# ifdef THREADS
word dummy[SMALL_CLEAR_SIZE];
static unsigned random_no = 0;
/* Should be more random than it is ... */
/* Used to occasionally clear a bigger */
/* chunk. */
# define SLOP 400
/* Extra bytes we clear every time. This clears our own */
/* activation record, and should cause more frequent */
/* clearing near the cold end of the stack, a good thing. */
# define GC_SLOP 4000
/* We make GC_high_water this much hotter than we really saw */
/* saw it, to cover for GC noise etc. above our current frame. */
# define CLEAR_THRESHOLD 100000
/* We restart the clearing process after this many bytes of */
/* allocation. Otherwise very heavily recursive programs */
/* with sparse stacks may result in heaps that grow almost */
/* without bounds. As the heap gets larger, collection */
/* frequency decreases, thus clearing frequency would decrease, */
/* thus more junk remains accessible, thus the heap gets */
/* larger ... */
# ifdef THREADS
if (++random_no % 13 == 0) {
limit = sp;
MAKE_HOTTER(limit, BIG_CLEAR_SIZE*sizeof(word));
limit &= ~0xf; /* Make it sufficiently aligned for assembly */
/* implementations of GC_clear_stack_inner. */
return GC_clear_stack_inner(arg, limit);
} else {
BZERO(dummy, SMALL_CLEAR_SIZE*sizeof(word));
return arg;
}
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# else
if (GC_gc_no > GC_stack_last_cleared) {
/* Start things over, so we clear the entire stack again */
if (GC_stack_last_cleared == 0) GC_high_water = (word) GC_stackbottom;
GC_min_sp = GC_high_water;
GC_stack_last_cleared = GC_gc_no;
GC_words_allocd_at_reset = GC_words_allocd;
}
/* Adjust GC_high_water */
MAKE_COOLER(GC_high_water, WORDS_TO_BYTES(DEGRADE_RATE) + GC_SLOP);
if (sp HOTTER_THAN GC_high_water) {
GC_high_water = sp;
}
MAKE_HOTTER(GC_high_water, GC_SLOP);
limit = GC_min_sp;
MAKE_HOTTER(limit, SLOP);
if (sp COOLER_THAN limit) {
limit &= ~0xf; /* Make it sufficiently aligned for assembly */
/* implementations of GC_clear_stack_inner. */
GC_min_sp = sp;
return(GC_clear_stack_inner(arg, limit));
} else if (WORDS_TO_BYTES(GC_words_allocd - GC_words_allocd_at_reset)
> CLEAR_THRESHOLD) {
/* Restart clearing process, but limit how much clearing we do. */
GC_min_sp = sp;
MAKE_HOTTER(GC_min_sp, CLEAR_THRESHOLD/4);
if (GC_min_sp HOTTER_THAN GC_high_water) GC_min_sp = GC_high_water;
GC_words_allocd_at_reset = GC_words_allocd;
}
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# endif
}
/* Return a pointer to the base address of p, given a pointer to a */
/* an address within an object. Return 0 o.w. */
# ifdef __STDC__
GC_PTR GC_base(GC_PTR p)
# else
GC_PTR GC_base(p)
GC_PTR p;
# endif
{
register word r;
register struct hblk *h;
register bottom_index *bi;
register hdr *candidate_hdr;
register word limit;
r = (word)p;
if (!GC_is_initialized) return 0;
h = HBLKPTR(r);
GET_BI(r, bi);
candidate_hdr = HDR_FROM_BI(bi, r);
if (candidate_hdr == 0) return(0);
/* If it's a pointer to the middle of a large object, move it */
/* to the beginning. */
while (IS_FORWARDING_ADDR_OR_NIL(candidate_hdr)) {
h = FORWARDED_ADDR(h,candidate_hdr);
candidate_hdr = HDR(h);
}
if (candidate_hdr -> hb_map == GC_invalid_map) return(0);
/* Make sure r points to the beginning of the object */
r &= ~(WORDS_TO_BYTES(1) - 1);
{
map_entry = MAP_ENTRY((candidate_hdr -> hb_map), offset);
if (map_entry > CPP_MAX_OFFSET) {
map_entry = (signed_word)(BYTES_TO_WORDS(offset)) % sz;
}
r -= WORDS_TO_BYTES(map_entry);
limit = r + WORDS_TO_BYTES(sz);
if (limit > (word)(h + 1)
&& sz <= BYTES_TO_WORDS(HBLKSIZE)) {
if ((word)p >= limit) return(0);
}
return((GC_PTR)r);
}
/* Return the size of an object, given a pointer to its base. */
/* (For small obects this also happens to work from interior pointers, */
/* but that shouldn't be relied upon.) */
# ifdef __STDC__
size_t GC_size(GC_PTR p)
# else
size_t GC_size(p)
GC_PTR p;
# endif
{
register int sz;
register hdr * hhdr = HDR(p);
sz = WORDS_TO_BYTES(hhdr -> hb_sz);
}
size_t GC_get_heap_size GC_PROTO(())
{
return ((size_t) GC_heapsize);
}
size_t GC_get_free_bytes GC_PROTO(())
{
return ((size_t) GC_large_free_bytes);
}
size_t GC_get_bytes_since_gc GC_PROTO(())
{
return ((size_t) WORDS_TO_BYTES(GC_words_allocd));
}
size_t GC_get_total_bytes GC_PROTO(())
{
return ((size_t) WORDS_TO_BYTES(GC_words_allocd+GC_words_allocd_before_gc));
}
GC_bool GC_is_initialized = FALSE;
void GC_init()
{
DCL_LOCK_STATE;
DISABLE_SIGNALS();
if (!GC_is_initialized) {
BOOL (WINAPI *pfn) (LPCRITICAL_SECTION, DWORD) = NULL;
HMODULE hK32 = GetModuleHandle("kernel32.dll");
if (hK32)
pfn = (BOOL (WINAPI *) (LPCRITICAL_SECTION, DWORD))
GetProcAddress (hK32,
"InitializeCriticalSectionAndSpinCount");
if (pfn)
pfn(&GC_allocate_ml, 4000);
else
InitializeCriticalSection (&GC_allocate_ml);
}
LOCK();
GC_init_inner();
UNLOCK();
ENABLE_SIGNALS();
# if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
/* Make sure marker threads and started and thread local */
/* allocation is initialized, in case we didn't get */
/* called from GC_init_parallel(); */
{
extern void GC_init_parallel(void);
GC_init_parallel();
}
# endif /* PARALLEL_MARK || THREAD_LOCAL_ALLOC */
# if defined(DYNAMIC_LOADING) && defined(DARWIN)
{
/* This must be called WITHOUT the allocation lock held
and before any threads are created */
extern void GC_init_dyld();
GC_init_dyld();
}
# endif
#if defined(MSWIN32) || defined(MSWINCE)
CRITICAL_SECTION GC_write_cs;
#endif
#ifdef MSWIN32
extern GC_bool GC_no_win32_dlls;
#else
# define GC_no_win32_dlls FALSE
#endif
void GC_exit_check GC_PROTO((void))
{
GC_gcollect();
}
#ifdef SEARCH_FOR_DATA_START
extern void GC_init_linux_data_start GC_PROTO((void));
#endif
#ifdef UNIX_LIKE
extern void GC_set_and_save_fault_handler GC_PROTO((void (*handler)(int)));
static void looping_handler(sig)
int sig;
{
GC_err_printf1("Caught signal %d: looping in handler\n", sig);
for(;;);
}
{
/* Install looping handler before the write fault handler, so we */
/* handle write faults correctly. */
if (!installed_looping_handler && 0 != GETENV("GC_LOOP_ON_ABORT")) {
GC_set_and_save_fault_handler(looping_handler);
installed_looping_handler = TRUE;
}
}
#else /* !UNIX_LIKE */
# define maybe_install_looping_handler()
# if !defined(THREADS) && defined(GC_ASSERTIONS)
if (0 != GETENV("GC_PRINT_STATS")) {
GC_print_stats = 1;
}
# ifndef NO_DEBUGGING
if (0 != GETENV("GC_DUMP_REGULARLY")) {
GC_dump_regularly = 1;
}
# endif
# ifdef KEEP_BACK_PTRS
{
char * backtraces_string = GETENV("GC_BACKTRACES");
if (0 != backtraces_string) {
GC_backtraces = atol(backtraces_string);
if (backtraces_string[0] == '\0') GC_backtraces = 1;
}
}
if (0 != GETENV("GC_FIND_LEAK")) {
GC_find_leak = 1;
}
if (0 != GETENV("GC_ALL_INTERIOR_POINTERS")) {
GC_all_interior_pointers = 1;
}
if (0 != GETENV("GC_DONT_GC")) {
GC_dont_gc = 1;
}
if (0 != GETENV("GC_PRINT_BACK_HEIGHT")) {
GC_print_back_height = 1;
}
if (0 != GETENV("GC_NO_BLACKLIST_WARNING")) {
GC_large_alloc_warn_interval = LONG_MAX;
}
{
char * time_limit_string = GETENV("GC_PAUSE_TIME_TARGET");
if (0 != time_limit_string) {
long time_limit = atol(time_limit_string);
if (time_limit < 5) {
WARN("GC_PAUSE_TIME_TARGET environment variable value too small "
"or bad syntax: Ignoring\n", 0);
} else {
GC_time_limit = time_limit;
}
}
}
{
char * interval_string = GETENV("GC_LARGE_ALLOC_WARN_INTERVAL");
if (0 != interval_string) {
long interval = atol(interval_string);
if (interval <= 0) {
WARN("GC_LARGE_ALLOC_WARN_INTERVAL environment variable has "
"bad value: Ignoring\n", 0);
} else {
GC_large_alloc_warn_interval = interval;
}
}
}
/* Adjust normal object descriptor for extra allocation. */
if (ALIGNMENT > GC_DS_TAGS && EXTRA_BYTES != 0) {
GC_obj_kinds[NORMAL].ok_descriptor = ((word)(-ALIGNMENT) | GC_DS_LENGTH);
}
GC_setpagesize();
GC_exclude_static_roots(beginGC_arrays, endGC_arrays);
GC_exclude_static_roots(beginGC_obj_kinds, endGC_obj_kinds);
# ifdef SEPARATE_GLOBALS
GC_exclude_static_roots(beginGC_objfreelist, endGC_objfreelist);
GC_exclude_static_roots(beginGC_aobjfreelist, endGC_aobjfreelist);
# if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
# if defined(GC_PTHREADS) || defined(GC_SOLARIS_THREADS) \
|| defined(GC_WIN32_THREADS)
# ifdef GC_SOLARIS_THREADS
/* We need dirty bits in order to find live stack sections. */
GC_dirty_init();
# endif
# if !defined(THREADS) || defined(GC_PTHREADS) || defined(GC_WIN32_THREADS) \
|| defined(GC_SOLARIS_THREADS)
/* Use thread_stack_base if available, as GC could be initialized from
a thread that is not the "main" thread. */
GC_stackbottom = GC_get_thread_stack_base();
# endif
if (GC_stackbottom == 0)
GC_stackbottom = GC_get_stack_base();
GC_register_stackbottom = GC_get_register_stack_base();
# endif
if (GC_register_stackbottom == 0) {
WARN("GC_register_stackbottom should be set with GC_stackbottom", 0);
/* alignment properties that may not hold with a user set */
/* GC_stackbottom. */
GC_register_stackbottom = GC_get_register_stack_base();
}
# endif
GC_STATIC_ASSERT(sizeof (ptr_t) == sizeof(word));
GC_STATIC_ASSERT(sizeof (signed_word) == sizeof(word));
GC_STATIC_ASSERT(sizeof (struct hblk) == HBLKSIZE);
# ifndef THREADS
# if defined(STACK_GROWS_UP) && defined(STACK_GROWS_DOWN)
ABORT(
"Only one of STACK_GROWS_UP and STACK_GROWS_DOWN should be defd\n");
# endif
# if !defined(STACK_GROWS_UP) && !defined(STACK_GROWS_DOWN)
ABORT(
"One of STACK_GROWS_UP and STACK_GROWS_DOWN should be defd\n");
# endif
# ifdef STACK_GROWS_DOWN
GC_ASSERT((word)(&dummy) <= (word)GC_stackbottom);
GC_ASSERT((word)(&dummy) >= (word)GC_stackbottom);
# endif
# endif
# if !defined(_AUX_SOURCE) || defined(__GNUC__)
GC_ASSERT((word)(-1) > (word)0);
/* word should be unsigned */
GC_ASSERT((signed_word)(-1) < (signed_word)0);
/* Add initial guess of root sets. Do this first, since sbrk(0) */
/* might be used. */
if (GC_REGISTER_MAIN_STATIC_DATA()) GC_register_data_segments();
{
char * sz_str = GETENV("GC_INITIAL_HEAP_SIZE");
if (sz_str != NULL) {
initial_heap_sz = atoi(sz_str);
if (initial_heap_sz <= MINHINCR * HBLKSIZE) {
WARN("Bad initial heap size %s - ignoring it.\n",
sz_str);
}
initial_heap_sz = divHBLKSZ(initial_heap_sz);
}
}
{
char * sz_str = GETENV("GC_MAXIMUM_HEAP_SIZE");
if (sz_str != NULL) {
word max_heap_sz = (word)atol(sz_str);
if (max_heap_sz < initial_heap_sz * HBLKSIZE) {
WARN("Bad maximum heap size %s - ignoring it.\n",
sz_str);
}
if (0 == GC_max_retries) GC_max_retries = 2;
GC_set_max_heap_size(max_heap_sz);
}
}
GC_err_printf0("Can't start up: not enough memory\n");
EXIT();
}
/* Preallocate large object map. It's otherwise inconvenient to */
/* deal with failure. */
if (!GC_add_map_entry((word)0)) {
GC_err_printf0("Can't start up: not enough memory\n");
EXIT();
}
GC_register_displacement_inner(0L);
# ifdef MERGE_SIZES
GC_init_size_map();
# endif
# ifdef PCR
if (PCR_IL_Lock(PCR_Bool_false, PCR_allSigsBlocked, PCR_waitForever)
!= PCR_ERes_okay) {
ABORT("Can't lock load state\n");
} else if (PCR_IL_Unlock() != PCR_ERes_okay) {
ABORT("Can't unlock load state\n");
}
PCR_IL_Unlock();
GC_pcr_install();
# endif
if (!GC_no_win32_dlls && 0 != GETENV("GC_ENABLE_INCREMENTAL")) {
GC_ASSERT(!GC_incremental);
GC_setpagesize();
# ifndef GC_SOLARIS_THREADS
GC_dirty_init();
# endif
GC_ASSERT(GC_words_allocd == 0)
GC_incremental = TRUE;
}
# endif /* !SMALL_CONFIG */
if (!GC_dont_precollect || GC_incremental) GC_gcollect_inner();
# ifdef STUBBORN_ALLOC
GC_stubborn_init();
# endif
/* Convince lint that some things are used */
# ifdef LINT
{
extern char * GC_copyright[];
extern int GC_read();
extern void GC_register_finalizer_no_order();
GC_noop(GC_copyright, GC_find_header,
GC_push_one, GC_call_with_alloc_lock, GC_read,
GC_dont_expand,
# ifndef NO_DEBUGGING
GC_dump,
# endif
GC_register_finalizer_no_order);
}
# endif
}
void GC_enable_incremental GC_PROTO(())
{
# if !defined(SMALL_CONFIG) && !defined(KEEP_BACK_PTRS)
/* If we are keeping back pointers, the GC itself dirties all */
/* pages on which objects have been marked, making */
/* incremental GC pointless. */
DCL_LOCK_STATE;
DISABLE_SIGNALS();
LOCK();
if (GC_incremental) goto out;
GC_setpagesize();
# ifndef GC_SOLARIS_THREADS
maybe_install_looping_handler(); /* Before write fault handler! */
GC_dirty_init();
# endif
if (!GC_is_initialized) {
GC_init_inner();
}
if (GC_dont_gc) {
/* Can't easily do it. */
UNLOCK();
ENABLE_SIGNALS();
return;
}
if (GC_words_allocd > 0) {
/* There may be unmarked reachable objects */
GC_gcollect_inner();
} /* else we're OK in assuming everything's */
/* clean since nothing can point to an */
/* unmarked object. */
GC_read_dirty();
GC_incremental = TRUE;
out:
UNLOCK();
ENABLE_SIGNALS();
#if defined(MSWIN32) || defined(MSWINCE)
# define LOG_FILE _T("gc.log")
if (GC_is_initialized) {
DeleteCriticalSection(&GC_write_cs);
}
}
int GC_write(buf, len)
GC_CONST char * buf;
size_t len;
{
BOOL tmp;
DWORD written;
if (len == 0)
return 0;
EnterCriticalSection(&GC_write_cs);
if (GC_stdout == INVALID_HANDLE_VALUE) {
return -1;
} else if (GC_stdout == 0) {
GC_stdout = CreateFile(LOG_FILE, GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, CREATE_ALWAYS, FILE_FLAG_WRITE_THROUGH,
NULL);
if (GC_stdout == INVALID_HANDLE_VALUE) ABORT("Open of log file failed");
}
tmp = WriteFile(GC_stdout, buf, len, &written, NULL);
if (!tmp)
DebugBreak();
LeaveCriticalSection(&GC_write_cs);
return tmp ? (int)written : -1;
}
#endif
#if defined(OS2) || defined(MACOS)
FILE * GC_stdout = NULL;
FILE * GC_stderr = NULL;
int GC_tmp; /* Should really be local ... */
void GC_set_files()
{
if (GC_stdout == NULL) {
GC_stdout = stdout;
}
if (GC_stderr == NULL) {
GC_stderr = stderr;
}
}
#endif
#if !defined(OS2) && !defined(MACOS) && !defined(MSWIN32) && !defined(MSWINCE)
int GC_stdout = 1;
int GC_stderr = 2;
# if !defined(AMIGA)
# include <unistd.h>
# endif
#endif
#if !defined(MSWIN32) && !defined(MSWINCE) && !defined(OS2) \
&& !defined(MACOS) && !defined(ECOS) && !defined(NOSYS)
GC_CONST char *buf;
size_t len;
{
register int bytes_written = 0;
register int result;
while (bytes_written < len) {
# ifdef GC_SOLARIS_THREADS
result = syscall(SYS_write, fd, buf + bytes_written,
len - bytes_written);
# else
result = write(fd, buf + bytes_written, len - bytes_written);
# endif
if (-1 == result) return(result);
bytes_written += result;
}
return(bytes_written);
}
#endif /* UN*X */
int GC_write(fd, buf, len)
{
_Jv_diag_write (buf, len);
return len;
}
#endif
#ifdef NOSYS
int GC_write(fd, buf, len)
{
/* No writing. */
return len;
}
#endif
#if defined(MSWIN32) || defined(MSWINCE)
# define WRITE(f, buf, len) GC_write(buf, len)
#else
# if defined(OS2) || defined(MACOS)
# define WRITE(f, buf, len) (GC_set_files(), \
GC_tmp = fwrite((buf), 1, (len), (f)), \
fflush(f), GC_tmp)
# else
# define WRITE(f, buf, len) GC_write((f), (buf), (len))
# endif
#endif
/* A version of printf that is unlikely to call malloc, and is thus safer */
/* to call from the collector in case malloc has been bound to GC_malloc. */
/* Assumes that no more than 1023 characters are written at once. */
/* Assumes that all arguments have been converted to something of the */
/* same size as long, and that the format conversions expect something */
/* of that size. */
void GC_printf(format, a, b, c, d, e, f)
long a, b, c, d, e, f;
{
char buf[1025];
if (GC_quiet) return;
buf[1024] = 0x15;
(void) sprintf(buf, format, a, b, c, d, e, f);
if (buf[1024] != 0x15) ABORT("GC_printf clobbered stack");
if (WRITE(GC_stdout, buf, strlen(buf)) < 0) ABORT("write to stdout failed");
}
void GC_err_printf(format, a, b, c, d, e, f)
long a, b, c, d, e, f;
{
char buf[1025];
buf[1024] = 0x15;
(void) sprintf(buf, format, a, b, c, d, e, f);
if (buf[1024] != 0x15) ABORT("GC_err_printf clobbered stack");
if (WRITE(GC_stderr, buf, strlen(buf)) < 0) ABORT("write to stderr failed");